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Abstract. Model calibration (or “tuning”) is a necessary part
of developing and testing coupled ocean—atmosphere climate
models regardless of their main scientific purpose. There is
an increasing recognition that this process needs to become
more transparent for both users of climate model output and
other developers. Knowing how and why climate models are
tuned and which targets are used is essential to avoiding pos-
sible misattributions of skillful predictions to data accommo-
dation and vice versa. This paper describes the approach and
practice of model tuning for the six major US climate mod-
eling centers. While details differ among groups in terms of
scientific missions, tuning targets, and tunable parameters,
there is a core commonality of approaches. However, prac-
tices differ significantly on some key aspects, in particular,
in the use of initialized forecast analyses as a tool, the ex-
plicit use of the historical transient record, and the use of the
present-day radiative imbalance vs. the implied balance in
the preindustrial era as a target.

1 Introduction

Simulation has become an essential tool for understanding
processes in the Earth system, interpreting observations and
for making predictions over short (weather), medium (sea-
sonal), and long (climate) terms. The complexity of this sys-

tem is evident in the myriad processes involved (such as the
microphysics of cloud nucleation, land surface heterogene-
ity, convective plumes, and ocean mesoscale eddies) and in
the dynamic views provided by remote sensing. This com-
plexity and wide range of scales that need to be incorporated
imply that simulations will necessarily include approxima-
tions to well-understood physics and empirical formulations
for unresolved effects. The simulations are neither a straight-
forward encapsulation of some well-known theory, nor are
they laboratory experiments probing the real world, though
they have features of both (Schmidt and Sherwood, 2014).
Despite this, climate and weather simulations have demon-
strated useful predictive skill across many emergent diagnos-
tics (Reichler and Kim, 2008; Flato et al., 2013; Bosilovich,
2013). Note that we distinguish fields or statistics in the
model that arise from the interactions of multiple physical
effects (“emergent properties”) from those that are closely
related to single processes or parameterizations.

Since the pioneering work in climate modeling in the mid-
20th century (e.g., Phillips, 1956; Manabe and Bryan, 1969;
Hansen et al., 1983), climate models have increased enor-
mously in scope and complexity, going from relatively crude
discretizations of atmospheric dynamics to, now, far more
detailed atmospheres, combined with ocean, sea ice, carbon
cycles, and interactive composition in the atmosphere, in-
cluding chemistry and multiple aerosol species. As that com-
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plexity has grown, more processes are explicitly included
and the parameterizations are pushed to a more detailed (and
more fundamental) level, allowing for better constraints on
unknown parameters. However, at the same time, the process
of model development has become more convoluted and now
involves many more components than it did originally. This
has led somewhat predictably to an unfortunate reduction in
transparency over time.

It is worth expanding on why this matters: first, model de-
velopment involves expert judgments which are inevitably
subjective, and with different choices there would be dif-
ferences in emergent responses. For instance, in the MPI
model, Mauritsen et al. (2012) show that equally valid but
distinct tunings can impact model sensitivity. This kind of be-
havior should therefore be reported more widely to improve
the assessment of the robustness of specific responses. Sec-
ond, models used as part of international assessment projects
(such as the Coupled Model Intercomparison Project, Phase
5: CMIP5) are increasingly being weighted or subset in order
to refine predictions. If the skill measure that is used to fil-
ter or weight models has been tuned for in some cases rather
than in others, the subset or weighted average will be biased
towards models where the skill measure was tuned over those
in which it was not, and that may not correspond to better
physics or better predictions (Knutti et al., 2010).

Thus it has become increasingly clear that a more trans-
parent process is necessary. A survey of modeling groups in-
volved in CMIP5 (Hourdin et al., 2017, hereafter H17) pro-
vides a good background on tuning practices and makes a
plea for better coordination of documentation of these issues.
This paper is a more detailed follow-up for a subset of cli-
mate models associated with laboratories in the US (three of
which were surveyed by H17, three of which were not). The
six modeling centers that are the focus of this paper have
all developed and maintained Earth system models that (at
minimum) have a dynamic atmosphere and coupled ocean
components and are global in scope. Additional components
(such as ice sheets, the carbon cycle, atmospheric chemistry,
and aerosols) are also common. While two of the models dis-
cussed (NCEP Climate Forecast System (CFS) and GEOS-5
(Goddard Earth Observing System 5) from NASA GMAO)
are primarily used for short-term (daily to seasonal) predic-
tions, there is sufficient overlap with the models focused on
longer-term problems (decadal to multidecadal periods) to
warrant describing them all as “climate models” below.

2 Why is climate model tuning necessary?

Climate and weather models consist of three levels of rep-
resentation of physical processes: fundamental physics (such
as conservation of energy, mass and momentum), approxi-
mations to well-known physical theories (the discretization
of the Navier—Stokes equations, broadband approximations
to line-by-line radiative transfer codes, etc.), and empirical
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approximations (“parameterizations”) needed to match the
phenomenology of unresolved or poorly understood subgrid-
scale or excluded processes (Hourdin et al., 2017). The de-
gree of approximation and complexity in the empirical pa-
rameterizations vary greatly across models and processes,
as well as the resolved scales. Many parameterizations em-
ploy an underlying paradigm that makes use of well-known
or well-observed processes so that the fundamental depen-
dence on the atmospheric state is approximated, albeit only
at a phenomenological level.

Parameters in climate models vary widely in their phys-
ical interpretation. Some are well-determined physical val-
ues, such as the Coriolis parameter, the acceleration due
to gravity, or the Stefan—Boltzmann constant. Some, such
as reaction rates for chemical or microphysical processes,
may be inferred from laboratory or field measurements (with
some uncertainty). Some emerge from the construction of
parameterizations but do not correspond directly to well-
defined physical processes, e.g., “erosion rates” for clouds
(Tiedtke, 1993). Others also emerge from the characteriza-
tion of model subgrid-scale variations in the parameteriza-
tions, such as the “critical relative humidity” for cloud forma-
tion (Schmidt et al., 2006), or equivalent mixing rates for tur-
bulent transport, and may be loosely approximated from ei-
ther observations or higher-resolution models (e.g., Siebesma
and Cuijpers, 1995).

Individual parameterizations for a specific phenomenon
are generally calibrated to process-level data using high-
resolution modeling and/or field campaigns to provide con-
straints. For instance, boundary layer parameterizations
might be tuned to well-observed case studies such as in
Larcfrom (Pithan et al., 2016) or DICE (http://appconv.
metoffice.com/dice/dice.html). However, in some cases, even
when parameter values are well constrained physically or ex-
perimentally, simulations can often be improved by choos-
ing values that violate these constraints. For example, Go-
laz et al. (2011) found that cooling by interactions between
anthropogenic aerosols and clouds in GFDL’s AM3 model
depends strongly on the volume-mean radius at which cloud
droplets begin to precipitate. By altering CM3 after its con-
figuration used for CMIP5 was established as described in
Donner et al. (2011), Golaz et al. (2013) found that its 20th-
century temperature increase could be simulated more real-
istically (larger increase) using values for this threshold drop
size smaller than observed (Pawlowska and Brenguier, 2003;
Suzuki et al., 2013) (see Sect. 4.1 below). Another example
is the variation in the effective diffusion constants for mo-
mentum, moisture, and temperature, which has been used to
decrease large root-mean-square errors in tropical winds in
the NCEP model.

A number of parameters remain that are not strongly con-
strained by process-level observations or theory but that
nonetheless have large impacts on emergent properties of
the simulation. It is these additional degrees of freedom that
are used to “tune” or calibrate the emergent properties of the
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model against a selected set of target observations. The deci-
sions on what to tune, and especially what targets to tune
for, undoubtedly involve value judgments (Hourdin et al.,
2017; Winsberg, 2012; Schmidt and Sherwood, 2014; Inte-
mann, 2015). Notably, there is not any obvious consensus in
the modeling community as to the extent to which parame-
ter choices should be guided by conforming to process-level
knowledge as opposed to optimizing emergent behaviors in
climate models. At many centers, the philosophy for the most
part has been to tune parameters in ways that make physical
sense, with the expectation that in the long run that should be
the best strategy. Increasing skill in climate models over time
does support this approach (Reichler and Kim, 2008).

Additionally, climate simulations depend not only on pa-
rameter choices within an established model structure but
also on the structural choices made in the parameteriza-
tion itself. Examples include experimentation with alternate
closures and triggers for the cumulus parameterization at
GFDL during the development of GFDL AM3 (Benedict
et al., 2013) and evaluation of two candidate parameteri-
zations for cloud macrophysics and convection in NCAR
CESM2 (Community Earth System model 2) (Bogenschutz
et al., 2013; Park, 2014). Theoretically, all such structural
choices could be coded to vary with a parameter and so there
is no strong theoretical distinction between parameter and
structural variations. In practice, however, perturbed physics
ensembles (PPEs) do not span as wide a range of structural
variations as multimodel ensembles of opportunity (Yoko-
hata et al., 2012). These examples suggest that it can be hard
to distinguish model tuning from model development (writ
large) in practice, since both happen concurrently. For our
purposes, we define tuning as a change occurring within a
fixed structural framework that does not involve adding new
physics.

Targets for possible tuning fall into three classes. First
there are targets that need to be satisfied in order for use-
ful numerical experiments to be performed in the first place
(usually related to the equilibration of model components
with long timescales). The most important of these is a re-
quirement of near energy balance at the top of the atmo-
sphere and surface in an initial state of a coupled model to
prevent temperature drifts over time. Strictly speaking this
is not tuning to an observed quantity, but rather is a tuning
to a situation that was approximately inferred to hold in the
“preindustrial” (PI) period. Note that while the concept of a
preindustrial period is a little elusive (Hawkins et al., 2017),
we refer to conditions around the mid-19th century around
1850. To avoid dealing with the lack of sufficient observa-
tional data from the 19th century, some modeling groups
(see below) alternatively choose to tune to present-day (PD)
conditions, including an energy imbalance at the top of the
atmosphere (TOA) as inferred from ocean observations to-
day (Loeb et al., 2009). Another tuning target is sometimes
referred to as the radiative forcing perturbation (RFP), or
the effective radiative forcing, and is the change in net flux
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which occurs in a multiyear integration with specified cli-
matological sea surface temperatures (SSTs) when emissions
(primary aerosols and short-lived gases), long-lived green-
house gas (GHG) concentrations (carbon dioxide, nitrous ox-
ide, methane, and the halocarbons), and solar irradiance are
changed from preindustrial to present-day values.

A second class of tuning targets are well-characterized cli-
matological observations which might include annual means,
average seasonal cycles, or interannual variance. A third po-
tential class are observations of transient events (on daily to
centennial scales) or trends. Some observational targets have
important (and sometimes unrecognized) structural uncer-
tainties and therefore any tuning to those targets risks over-
fitting the model to imperfect data, potentially reducing skill
in “out-of-sample” predictions (those for which the evalu-
ation data either did not exist at the time of the prediction
or were not used in model development or tuning). This is
a particular problem for transient observations such as esti-
mates of early 20th-century temperature changes (Thompson
et al., 2008; Richardson et al., 2016), pre-1979 sea-ice extent
(Meier et al., 2012; Walsh et al., 2017), pre-1990 ocean heat
content change (Levitus et al., 2000; Church et al., 2011), or
water vapor trends (Dessler and Davis, 2010), which have all
been corrected in recent years, as nonclimate artifacts in the
raw observations have been found and adjusted for. In con-
trast, many climatologies over the satellite era are robust met-
rics whose estimates over any fixed period have not changed
appreciably as understanding of the observations evolved.

Models equipped for data assimilation or that are used for
operational forecasts have the additional possibility of tuning
parameters to improve skill scores in those forecasts on mul-
tiple timescales — whether they be 6-hourly, daily, weekly, or
even for many months for seasonal forecasts of, for instance,
the state of the tropical Pacific.

We note here a distinction between fields that are closely
monitored during the model development process (many ex-
amples are given below) and specific tuning targets. Moni-
tored diagnostics tend to be complex emergent diagnostics
that do not depend in any simple way on adjustable param-
eters, and thus are difficult (or impractical) to tune for. For
example, note that the range of preindustrial global tem-
peratures in CMIPS is [12.0,14.8] °C, which is noticeably
wider than the uncertainties in that quantity (£0.5 °C; Jones
et al., 2012). Changes in such a monitored field are kept track
of, but unless the values stray beyond a nominal acceptable
range no action to change the code would be taken. If the
values do stray, the principal action is often taken to go into
detail and examine what has happened more closely.

The limitations of tuning are well known (Mauritsen et al.,
2012; Schmidt and Sherwood, 2014; Hourdin et al., 2017).
First, it provides remarkably little leverage in improving
overall model skill once a reasonable part of parameter space
has been identified — for instance, tuning has been unable to
resolve the persistent so-called “double ITCZ” problem (Lin,
2007; Oueslati and Bellon, 2015). Second, improvements in
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one field are often accompanied by degradation in others, and
thus the final choice of parameters involves subjective judg-
ments about the relative importance of different aspects of
the simulations. For example, the Australian contribution to
CMIP5 (ACCESS v.1) used a version of the UK Met Office
atmosphere model with small modifications to mitigate prob-
lems in the tropics and Southern Hemisphere that affect Aus-
tralian forecasts, at the expense of performance elsewhere (Bi
et al., 2013). There are additionally many obvious biases in
model simulations that persist across model generations, in-
dicating that these aspects are robustly stubborn to develop-
ment changes in the model (including the tuning) (Masson
and Knutti, 2011).

Most discussions of tuning deal with explicit calibration
of parameters to match a target observation. However, analy-
sis of the CMIP3 ensemble (Kiehl, 2007; Knutti, 2008) sug-
gested that there may have been some kind of implicit tun-
ing related to aerosol forcing and climate sensitivity among
a subset of models, with models with higher sensitivity hav-
ing a tendency to have higher (more negative) aerosol forc-
ing (this situation was less evident in CMIPS5; Forster et al.,
2013). Both of these correlations, however, seem rather low
(CMIP3: 0.24; CMIP5: 0.19) and so do not provide evidence
for a general tuning related to forcing and sensitivity. That
models with accurate historical simulations must trade off
forcing and sensitivity is not necessarily evidence they have
been tuned to do so. Since the CMIP3 models’ aerosol forc-
ings were not explicitly tuned to enforce the observed his-
torical trend in temperature, the mechanisms that might ex-
plain this observation are unclear. With further data on the
current top-of-atmosphere radiative imbalance (Allan et al.,
2014; von Schuckmann et al., 2016), this issue will, however,
need to be revisited for the latest generation of models.

Model selection can also act as an implicit form of tun-
ing, even though this might be seen by others as simple
model development. In deciding between two versions of a
dynamical core or convection parameterizations, skill in El
Nifio—Southern Oscillation (ENSO) variability or reductions
of ocean drifts may play an important role. Conceivably, a
modeling center may decide not to release or use a particular
version because it fails to meet certain criteria perceived to be
essential, though more generally this will simply spur further
development. One candidate criterium would be a realistic
simulation of the 20th century; however, the wide spread in
20th-century trends in the CMIP5 ensemble (Forster et al.,
2013, Fig. 7) would indicate that this has not been generally
applied (though see below for more detailed discussion of the
use of historical changes).

Within climate models, there is always a choice as to
whether to tune a specific component (such as the atmo-
sphere, sea ice, land surface, or ocean) with tightly con-
strained boundary conditions or to tune the coupled model
as a whole. In practice, both approaches are taken, though
the relative importance and computation resources available
vary across groups. Tuning components is generally fast and
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efficient, but does not necessarily prove robust when those
components are coupled. However, coupled models take a
very long time to equilibrate, and their quasi-stable states
may be too far from the observed climate to be useful. As-
suming that models conserve energy appropriately, all con-
trol runs will eventually drift to a quasi-steady state with a
near-zero energy balance at the TOA and at the surface of the
ocean. However, the realism of the final state is not guaran-
teed and, indeed, given the long time constants in the ocean,
might require many thousands of years of integration to get
to the wrong answer. Thus a balance must be struck between
approaches.

3 Specific practices

Each of six US modeling centers described below have spe-
cific missions and foci that drive different aspects of their
modeling. For instance, NASA GMAO and NCEP have op-
erational data assimilation products for short-term weather,
longer seasonal forecasts, and reanalyses that form the core
of their tasks. NCAR CESM, GFDL, and NASA GISS have
more long-term climate change issues at the forefront of their
research, but each with different mandates — respectively, to
be a community model, to advance NOAA’s mission goal to
understand and predict changes in climate, and to help in-
terpret and use NASA remote sensing products. The DOE’s
Accelerated Climate Modeling for Energy (ACME) project
has been tasked with a very specific role to serve DOE’s en-
ergy planning and computational resource needs.

For each modeling group, we describe the principal tar-
gets and tuning strategies for their atmosphere-only GCM
(general circulation model), their coupled ocean—atmosphere
GCM, and additional Earth system components as relevant.
The specific models referred to are described in Table 1. We
outline the commonalities of approaches and key differences
in Sect. 4, and then discuss the implications and ways for-
ward in Sect. 5.

3.1 DOE

The prototype version of DOE ACME v0 is closely related to
the CESM. The initial version ACME v1, currently under de-
velopment, incorporates new ocean and sea-ice components
(Model for Prediction Across Scales: MPAS) (Ringler et al.,
2013) as well as updated atmosphere and land components.
ACME vl is being developed at two horizontal resolutions: a
low-resolution configuration, which includes an atmosphere
at approximately 1° and an ocean with varying resolution
between 60 and 30 km, and a high-resolution configuration,
which is based on a 1/4° atmosphere and an eddy-permitting
ocean resolution between 18 and 6 km.

Tuning is performed iteratively at the component levels
and on the fully coupled system. Most of the component-
level tuning takes place in the atmosphere. The atmosphere
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Modeling group Model

Reference

Department of Energy (DOE)
NOAA Geophysical Fluid CM3
Dynamics Laboratory (GFDL)

ACME vl

in preparation
Donner et al. (2011), Griffies et al. (2011)

NASA Goddard Institute for GISS-E2/2.1  Schmidt et al. (2014)
Space Studies (GISS)

NASA Global Modeling and GEOS5 Rienecker et al. (2008), Molod et al. (2015)
Assimilation Office (GMAO)

National Center for Atmospheric CESM1 Gent et al. (2011), Hurrell et al. (2013)
Research (NCAR)

NOAA National Center for CFS vl & v2  Saha et al. (2006, 2010, 2014)

Environmental Prediction (NCEP)

is primarily tuned using short simulations (2 to 10 years)
with climatological SSTs and sea-ice boundary conditions,
either for present-day (circa 2000) or preindustrial condi-
tions. The tuning targets a near-zero TOA radiation balance
for 1850 by adjusting cloud-related parameters. Overall sim-
ulation fidelity is another important aspect of the tuning pro-
cess, with the goal of minimizing errors in important clima-
tological fields such as sea level pressure, short- and long-
wave cloud radiative effects, precipitation, near-surface land
temperature, surface wind stress, 300 hPa zonal wind, aerosol
optical depth, zonal mean temperature, and relative humidity.
The magnitude of the aerosol indirect effects is also evaluated
and adjusted if deemed to be inconsistent with the observed
historical warming (specifically if it has a magnitude greater
than 1.5 W m~2). Cess climate sensitivity (Cess et al., 1990)
is monitored using idealized SST+4K simulations. To date,
there have been no situations where the estimated sensitivity
was deemed to be unacceptable based on expert judgment.
Should such a situation arise, the model would receive ex-
tra scrutiny to better understand what may have caused the
climate sensitivity to change compared to previous develop-
mental versions. The radiative imbalance in the 21st century
with observed SST must be positive, with a target range of
0.5t0 IWm™2.

Most of the tuning is performed using the low-resolution
atmosphere. However, cloud parameterizations need to be re-
tuned separately for the high-resolution atmosphere. Because
of the cost of the high-resolution atmosphere, it is more ef-
fective to use short hindcast simulations (Ma et al., 2015) to
first evaluate the parameter space.

Tuning is also performed with the fully coupled system us-
ing perpetual preindustrial or present-day forcing. Ocean and
sea-ice initial conditions are either from rest (Locarnini et al.,
2013; Zweng et al., 2013) or derived from separate CORE ex-
periments (Griffies et al., 2009). Simulations vary in length
from a decade to over a century. Priority metrics for the cou-
pled preindustrial simulations are top-of-atmosphere radia-
tion, surface winds, sea-ice extent and thickness (climatol-
ogy and seasonal cycle), sea surface temperatures, stability
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of ocean heat content, meridional heat transport, overturning
circulations, and the Nino3.4 index. Longer coupled simula-
tions are often performed in pairs of perpetual present-day
and preindustrial forcing to monitor the combined impact of
anthropogenic forcings and climate sensitivity and to max-
imize the odds of successful historical simulations. To that
end, parallel coupled simulations, one with perpetual 1850
forcings and one with perpetual 2000 forcings, will be tested
to ensure that the 2000 control simulation is indeed warmer
than the 1850 control. Abrupt 4xCO, experiments are also
conducted to estimate the equilibrium climate sensitivity.

3.2 GFDL

In developing the GFDL atmospheric model AM3 and cou-
pled model CM3, parameter choices and some structural
choices as to how to deploy parameterizations were guided
by multiple goals. In addition to choosing parameters within
plausible ranges suggested by observations, experiments,
theory, or higher-resolution modeling, these goals included
simulating thermodynamic and dynamical fields, as well as
TOA regional shortwave and longwave fluxes, as realistically
as possible. The global and annual mean net TOA radiative
flux in integrations with specified, present-day (1981-2000)
SSTs was tuned to a slight positive imbalance (0.8 W m~2)
within observational estimates (Loeb et al., 2009). Particu-
lar attention was also given to surface properties important
for successfully coupling AM3 to models for sea ice (high-
latitude surface energy balance) and ocean (wind stresses
and implied ocean heat transports). Many of the changes
in parameters from earlier GFDL models or nominal val-
ues in literature describing the model parameterizations are
summarized in Donner et al. (2011). For example, the mo-
mentum source in the Alexander and Dunkerton (1999) pa-
rameterization for gravity wave drag was chosen based on
the stratospheric circulation it yielded. To facilitate optimiz-
ing input parameters to this parameterization, the orographic
wave parameterization was limited in the vertical extent of its
application. Additionally, the autoconversion threshold (the
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volume-mean radius at which cloud droplets begin to precipi-
tate), cloud erosion scales, and ice fall speeds in the Rotstayn
(1997) and Tiedtke (1993) cloud microphysics and macro-
physics parameterizations were tuned to improve regional
patterns of TOA shortwave and longwave fluxes, TOA short-
wave and longwave cloud radiative effects, the Earth’s en-
ergy imbalance, precipitation, and implied ocean heat trans-
ports.

The choices of a closure based on convective available
potential energy (CAPE) for the Donner (1993) deep cu-
mulus parameterization and the relaxation time and CAPE
threshold in that closure were primarily motivated by their
effects on the precipitation simulation. Tuning vertical diffu-
sion of horizontal momentum in the Donner (1993) deep and
Bretherton et al. (2004) shallow cumulus parameterizations
impacted tropical precipitation and surface wind stresses.
Other tunings related to convection include changes in en-
trainment (partly to account for changes in vertical resolu-
tion), the moisture budget for mesoscale circulations asso-
ciated with deep convection, and maximum heights for the
mesoscale circulations. These tunings improved precipita-
tion, shortwave cloud radiative effects, and implied ocean
heat transports. Changes in lateral entrainment for shallow
convection (Bretherton et al., 2004) also improved these
fields, limiting excessive low cloudiness in particular. The
maximum heights of the mesoscale circulations also exerted
a strong control on stratospheric water vapor. Between 100
and 10hPa, zonally averaged water vapor mixing ratios are
between 1.5 and 4mgkg~!, mostly within 0.5mgkg~! of
HALOE (Halogen Occultation Experiment) and MLS (Mi-
crowave Limb Sounder) observations.

Aspects of AM3 related to variability, including station-
ary wave patterns, relationships between the Nifio-3 index
and regional precipitation, relationships between the North-
ern Hemisphere annular mode and regional pressure and tem-
perature patterns, tropical cyclones, and the tropical wave
spectrum, were monitored during AM3 development (Don-
ner et al., 2011). Optimal tuning for mean state and vari-
ability in some cases conflicted. In AM3, this was particu-
larly evident for the tropical wave spectrum, including the
Madden—Julian Oscillation (MJO). Deep convective closures
and triggers which produced a realistic mean simulation did
so at the expense of the tropical wave spectrum (Benedict
et al., 2013).

AM3 includes prognostic aerosols based on emissions,
transport, chemical processes, and dry and wet removal. An
important aerosol tuning parameter is the strength of wet
scavenging. In-cloud condensate fractions were prescribed
to provide a reasonable simulation of the global mean and
regional distribution of aerosol optical depth. These conden-
sate fractions maintain relative solubilities among the various
aerosols in AM3.

AM3 is the first GFDL model to include cloud—aerosol
interactions. At the outset of this aspect of AM3 develop-
ment, estimates of climate forcing by cloud—aerosol interac-
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tions ranged to —3Wm2 (Lohmann and Feichter, 2005),
and GFDL’s AM2, modified to include cloud-aerosol inter-
actions, yielded an associated climate forcing of —2.3 W m™>
(Ming et al., 2005). Since climate forcing by greenhouse
gases is around 3Wm? (IPCC, 2013), the most extreme
estimates of climate forcing by cloud—aerosol interactions
would not be compatible with observed historical tempera-
ture increases. Given the approximate treatments of cloud-
aerosol interactions in climate models, the possibility that
some parameter combinations or formulations could lead
to these extreme estimates could not be ruled out during
model development. Indeed, Golaz et al. (2011) show that
the magnitude of climate forcing by cloud—aerosol interac-
tions depends strongly on the volume-mean drop radius at
which cloud droplets begin to precipitate. Golaz et al. (2011)
also find that assumptions regarding the subgrid distribution
of updraft speeds is an important control, though exerted
through re-tuning for radiative balance as the distribution of
updraft speeds is changed. The effective cloud-droplet ra-
dius and cloud droplet number concentration are both cen-
tral to climate forcing by cloud—aerosol interactions and vary
strongly with aerosol size distribution (Feingold, 2003; Mc-
Figgans et al., 2006). Ming et al. (2006), which is used to
parameterize aerosol activation in AM3, supports a range of
aerosol size distributions.

The TOA RFP (see Sect. 2) was monitored during AM3
development, as was the Cess climate sensitivity. A config-
uration for which the ratio of the RFP to the Cess sensitiv-
ity was about 15 % less than the value for AM2 (The GFDL
Global Atmospheric Model Development Team, 2004) was
selected for AM3. This imposes a bound on RFP which de-
pends on AM3 sensitivity and the forcing-to-sensitivity ratio
in AM2. Within the limitations of the Cess sensitivity, this
ratio was used to compare, without coupling, the changes
in global-mean surface temperature that might be expected
from CM3 relative to CM2. The basis for using this ra-
tio as a tuning target is past experience that CM2 gener-
ally simulates historical temperature change reasonably well.
Without coupling, this target, while not constraining forc-
ing or sensitivity independently, aimed to exploit knowledge
from earlier models about their joint behavior, associated
with realistic simulation of historical temperature change.
The AM3 RFP is 0.99 W m~2, with the aerosol contribution
about —1.6 Wm™2 (Golaz et al., 2013). The coupled model
CM3 was not further constrained with respect to its simula-
tion of 20th-century climate change. Although the ratio of
RFP to Cess sensitivity for AM3 is only about 15 % less
than for AM2, 20th-century temperature increases in CM3
are less than observed, while CM2.1 temperature increases
are greater than observed (Donner et al., 2011). The uncou-
pled ratio is clearly limited in its ability to fully indicate tem-
perature response in the coupled model.

The CM3 coupled model was initialized from present-day
ocean conditions and allowed to adjust to a preindustrial,
quasi-steady state with a small TOA energy imbalance (0.2—
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0.3 W m~2). Tuning in CM3 was concentrated in the atmo-
spheric component AM3. Outside of the atmospheric com-
ponent, sea ice, land, and vegetation albedo, along with snow
masking, were tuned. These tunings improved the Atlantic
Meridional Overturning Circulation in preliminary coupled
configurations, prior to final tuning of the atmospheric com-
ponent and subsequent initiation of the preindustrial coupled
control. The resulting albedos were generally more realistic
than those used in CM2.1. The change was made possible
by CM3’s improved realism in regions with sea ice (Donner
etal., 2011).

Note that the above description applies only to AM3 and
CM3. For CM4 (Zhao et al., 2016), development is ongoing,
and the specific tuning practices will be documented in future
papers.

3.3 NASA GISS

Tuning strategies in GISS ModelE2 are described in Schmidt
et al. (2014). In the atmosphere-only simulation under 1850
preindustrial conditions, the parameters in the cloud schemes
that control the threshold relative humidity and the critical ice
mass for condensate conversion are used to achieve global ra-
diative balance and a global-mean albedo of between 29 and
30 %. Additionally, parameters in the gravity wave drag are
chosen to optimize the simulation to the lower stratospheric
seasonal zonal wind field and the minimum tropopause tem-
perature. This also impacts high-latitude sea level pressure.
In ocean-only simulations as described in the CORE proto-
col (Griffies et al., 2009), mixing parameters are chosen to
minimize drift from observations in the basin-averaged tem-
perature and salinity.

Upon coupling the ocean and atmosphere models, there is
an initial drift to a quasi-stable equilibrium which is judged
on overall terms for realism, including the overall skill in
the climatological metrics for zonal mean temperature, sur-
face temperatures, sea level pressure, short- and longwave
radiation fluxes, precipitation, lower stratospheric water va-
por, and seasonal sea-ice extent. For the configuration to
be acceptable, drifts have to be relatively small, and quasi-
stable behavior of the North Atlantic meridional circulation
and other ocean metrics, including the Antarctic Circumpolar
Circulation, are required. While ENSO metrics are also mon-
itored, they are not specifically tuned for. In practice, longer
spin-up integrations help reduce drift, and the model state,
once stabilized, can be assessed for suitability. Large drifts
at the start of an integration have often been reduced by dif-
ferent tuning choices that either affect surface atmospheric
fluxes or (more usually) ocean mixing.

Subsequent to CMIPS, further tuning exercises and de-
velopment has occurred for the production of the E2.1 ver-
sion of the model. One important tuning success was due to
the adjustments made to the convection scheme in order to
allow for the simulation of the Madden—Julian Oscillation
(Kim et al., 2012). A combination of greater entrainment and
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the addition of a subgrid-scale explicit “cold pool” feature
greatly enhanced variability on MJO timescales and lead to
greatly increased forecast skill in initialized 20-day simula-
tions (Del Genio et al., 2015).

Further fine tuning in the coupled models, for instance for
the exact global-mean surface temperature, is effectively pre-
cluded by the long spin-up times and limited resources avail-
able. No tuning is done for climate sensitivity or for perfor-
mance in a simulation with transient forcing or hindcasts. In
transient simulations without an explicit aerosol indirect ef-
fect, the aerosol indirect effect was preset to have a value of
—1Wm™2 in 2000 in the CMIP5 simulations (Miller et al.,
2014), while configurations with aerosol microphysics have
free latitude to produce whatever forcing is calculated.

In simulations with interactive atmospheric composition,
there are two specific tunings for ozone chemistry: the pho-
tolysis rate in the atmospheric window region for incom-
ing solar radiation and the temperature threshold for the for-
mation of polar stratospheric clouds (and hence the hetero-
geneous chemistry associated with them) (Shindell et al.,
2013). The former is tuned so that N»O and O3 fields in the
lower tropical stratosphere match observations, while the lat-
ter can be used to ensure that the polar ozone hole timing
is correct despite potential biases in polar vortex tempera-
tures. With respect to dust aerosols, emissions are tuned so
that the model can match retrieved aerosol optical depths for
the present day (Miller et al., 2006); similarly, tuning of the
lightning parameterization (and associated source for NO,)
is done against modern observations of flash rate and tropo-
spheric ozone amounts.

For the E2.1 model and subsequent CMIP6 submissions,
all tuning is being done with preindustrial and present-
day fully interactive simulations (including chemistry and
aerosols and indirect effects) and the noninteractive versions
will use the composition derived from those simulations and
the same tuning.

3.4 NASA GMAO

The Goddard Earth Observing System model is currently
in use at the NASA GMAO at a wide range of resolutions
and for a wide range of applications. The range of resolu-
tions and applications for the atmospheric model includes
global mesoscale simulations and forecasts at approximately
7km, atmospheric data assimilation and forecasts at 12 km
(with ensemble members running at 50 km), seasonal cou-
pled atmosphere—ocean forecasts at approximately 50km,
present-day climate simulations at 100 km, and present-day
coupled chemistry climate simulations at resolutions from
12 to 100km. The tuning of the GEOS-5 AGCM physical
parameterizations, therefore, is designed to allow the model
to function across this range of uses and requires fidelity in
many aspects of the simulation. The tuning also includes ap-
propriate resolution dependence. Tuning targets differ among
the many types of experiments that are conducted as part of
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the model validation suite. The tuning suite includes present-
day (AMIP-style) climate simulations, “replay” experiments
at different resolutions (similar to nudging towards a re-
analysis), coupled atmosphere—ocean experiments, coupled
atmosphere—chemistry simulations, short-term forecasts, and
data assimilation experiments.

The tuning of the current version of the GEOS-5 AGCM is
described in Molod et al. (2015), which shows the results of
a series of sensitivity experiments demonstrating the impact
of each change in tuning. The substantial majority of the tun-
ing is focused on the behavior of the moisture turbulence pa-
rameterizations, and also includes a parameter change in the
gravity-wave drag scheme. For the lower-resolution appli-
cations and uses, systematic comparisons of seasonal mean
prognostic fields with different reanalysis estimates and com-
parisons of cloud properties with satellite based estimates are
used to identify errors in the mean present-day climate. It-
erative 30-year simulations at low resolution (100 km) and
repeated comparisons ensure that a change in tuning to ame-
liorate one bias does not inadvertently exacerbate another.
Key metrics include the mean and variance of the spatial dis-
tribution of CERES observations of all sky TOA longwave
and shortwave radiative fluxes, together with the daily TOA
longwave and shortwave distributions, which are monitored
to ensure that performance does not degrade through the de-
velopment or tuning process.

The contribution of cloudy effects is approached by ad-
justing the parameters that describe the cloud radiative ef-
fect (cloud particle size and autoconversion rates). The clear-
sky portion of the TOA fluxes is matched by tuning the pa-
rameters that govern the mean atmospheric humidity and
surface albedo over ice-covered surfaces. The free atmo-
sphere specific humidity is quite sensitive to the “critical rel-
ative humidity” specified in the cloud macrophysical scheme
(Molod, 2012), and so although this parameter is largely
dictated by observed subgrid-scale moisture variations, the
fine-tuning and the details of the vertical profile are tuned
to match a consensus of reanalysis estimates of specific
and relative humidity and Special Sensor Microwave Imager
(SSM/T) total precipitable water.

The boreal winter mean circulation, compared to reanal-
yses (as seen by the 200 hPa eddy height or by the 300 hPa
velocity potential), was found to be quite sensitive to the in-
tensity of the hydrological cycle, largely dictated by the rates
of re-evaporation or sublimation of rain and snow. These pa-
rameters are chosen so as to ensure agreement of the seasonal
mean circulation with reanalysis, the seasonal mean precip-
itation with observations from GPCP and TRMM, and the
agreement of the cloud radiative effects with CERES and
with SRB at the surface. The behavior of the atmosphere—
ocean coupled system is particularly sensitive to the geo-
graphical distribution of the surface shortwave cloud radia-
tive forcing in the tropics.

Additional observations of aerosol optical depth (from
MODIS) and other chemical constituents (e.g., CO from the
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Tropospheric Emission Spectrometer: TES) are used in the
GMAQO to validate the simulated turbulent and convective
transport. Data from MERRA-2, for example, include an
aerosol assimilation to assess errors in turbulent and convec-
tive transport (Gelaro et al., 2016). Although not all the mis-
matches between observed and modeled aerosol and CO are
attributable to transport, particular events or locations are iso-
lated where those processes dominate over others. These esti-
mates are largely used to constrain the tuning of the GEOS-5
surface and atmospheric turbulence parameterizations. The
choice of the turbulent length scale and the choice of param-
eters that govern the entrainment into buoyantly rising turbu-
lent parcels of air are made so as to constrain the turbulent
transport of aerosol. The extent of vertical mixing as well as
the advective transport out of the source regions is governed
by this choice of tuning parameters.

The GEOS-5 AGCM includes some resolution-dependent
parameters that govern the behavior of the moist processes.
The two most important parameters that are specified to
change with resolution in an ad hoc manner are chosen based
on physical arguments and based on results from GEOS-
5 global mesoscale simulations. The first of these is the
critical relative humidity for condensation and evaporation,
which accounts for subgrid-scale variations of total water.
Critical RH increases with resolution based on the expecta-
tion and evidence from global mesoscale model results that
subgrid-scale variations of total water decrease with increas-
ing resolution (Molod, 2012). The second of the resolution-
dependent parameters is the so-called Tokioka limit in the
convective parameterization. Again based on the expectation
that the larger convective motions are resolved explicitly and
on evidence from global mesoscale model results, the param-
eters that govern the stochastic Tokioka limit changes so as to
restrict parameterized deep convection at higher resolutions.

At the higher resolutions (25 km and better) the tuning pa-
rameters are chosen based on short-term forecasts and the
behavior as part of the data assimilation system. Forecast
skill scores, the fidelity of the spin-up of tropical cyclones
and the innovation vector for data assimilation (observation-
forecast statistics) are critical relevant metrics for new tuning
choices, and any new choices of tuning parameters are evalu-
ated with an ensemble of forecasts. The analysis increments
during both data assimilation and replay experiments provide
the key guidance for choosing the parameters to tune. Under
the general assumption that the mean analysis increments in-
dicate systematic errors in the model physics (which is not
always valid), correlations between the tendency term from
any individual physical parameterization and the analysis in-
crement reveals errors due to the behavior of that parameter-
ization, and parameters of that scheme are adjusted so as to
minimize the mean analysis increments.

High-resolution forecasts are also evaluated and tuned
based on comparisons with spatial and temporal variability
of high-resolution top-of-the-atmosphere fluxes and radar-
derived precipitation. As with the lower resolutions, the pa-
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rameters which are adjusted to meet the tuning targets are
the autoconversion rates, ice-fall rates, and the cloud droplet
size. In addition to these parameters, high-resolution tun-
ing also includes adjustments of the Tokioka limit and the
timescale of adjustment in the convective parameterization.
As an aside, we note that resolution decisions almost always
affect tunings (and development), and the goal that parame-
terized physics or models can be independent of resolution,
while a noble aim, is not yet a reality.

The ability to spin up tropical cyclones and match the cor-
rect track was found to be quite sensitive to the magnitude of
low-level drag. Based on theoretical considerations and the
results of laboratory experiments, the model’s function which
relates surface stress to roughness height over the oceans (the
“Charnock coefficient”) was adjusted to decrease the drag at
high wind speeds and resulted in substantial improvements
in the simulation of tropical cyclones (Molod et al., 2013).

In addition to the tuning based on physical reasoning and
diagnosis of errors using comparisons with observations,
some tuning choices are based on trial-and-error experimen-
tation. These include parameters that govern the magnitude
of the different types of surface drag (more drag increases
forecast skill score) and the adjustment timescale of mid-
latitude parameterized convection (more mid-latitude con-
vection increases forecast skill score).

The suite of different types of experiments with the GEOS-
5 GCM at different resolutions are run iteratively as part of
the overall tuning process, and the result is a model which
meets the variety of tuning targets described here. The trade-
offs among the parameter choices to meet the different tar-
gets exist, and necessitate prioritization of the tuning targets,
but in general this process results in a robust model that func-
tions well in the various applications needed to fulfill the
GMAQO’s goals and mission.

3.5 NCAR

The Community Earth System model (Hurrell et al., 2013)
is a joint NCAR and university-wide activity and gover-
nance takes place through a working group structure. Work-
ing groups are teams of scientists that contribute to the de-
velopment of each individual component (atmosphere, land,
ocean, sea ice, land ice, chemistry, and biogeochemistry)
and relevant topics (such as climate variability or climate
change).

Tuning begins as a generally separate activity for each
component within the working groups. During this initial
phase of tuning, periodic preindustrial control coupled simu-
lations are performed as a check on the impact of each com-
ponents’ developments to date on the whole coupled system,
and to ensure features of the simulation have not significantly
degraded.

The atmosphere model tuning strategy initially performs
“stand-alone” experiments using the AMIP protocol with
interactive land and atmosphere components and with pre-
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scribed observed SSTs and sea-ice distributions. Initial de-
velopment testing is performed using SSTs of the climato-
logical period centered around the year 2000 for 5-10-year
periods. This length of simulation is necessary due to the
high Arctic variability. The first key measure of a simula-
tion that will be appropriate to the fully coupled simulation is
the TOA energy balance. Estimates of the observed present-
day energy imbalance are on the order of 0.5-1.0 W m™?2
(Loeb et al., 2009), and the aim is to achieve close to that
through modification of cloud-related fields that have an im-
pact both on the shortwave and longwave components of the
energy budget. The first quantitative assessment of simula-
tion fidelity is given by summary RMSE and bias scores for a
number of variables key to the fully coupled system, includ-
ing surface stresses, precipitation, temperature, cloud forc-
ings, and surface pressure. A secondary assessment involves
“preindustrial minus present day” simulations to determine
the aerosol indirect effects that would be expected in his-
torical coupled simulations. This involves ensuring that the
net aerosol forcing is not greater in magnitude than about
(negative) 1.5 W m~2, based on guidance from Myhre et al.
(2013).

In parallel to the atmosphere component activities, the
ocean and ice working groups perform equivalent “stand-
alone experiments” with forcing provided by multiple cy-
cles of the CORE forcing protocol (Griffies et al., 2009).
The phenomena of key importance are the meridional over-
turning circulation (particularly in the North Atlantic), Gulf
Stream separation, Drake passage flow, equatorial ther-
mocline depth, and SSTs in the Pacific. The land tun-
ing approach uses land-only configurations forced by bias-
corrected reanalysis-based meteorological forcing products.
Metrics of performance are generally assessed for leaf area
index, gross primary productivity, river discharge, latent heat
flux, and vegetation and soil carbon stocks. Other physical
components of the coupled system, including land ice and
biogeochemistry, will also be developed and tuned in paral-
lel within their respective working groups.

Ideally, an atmosphere that was well-tuned in a configu-
ration with SSTs, sea ice, and land conditions relevant to
the preindustrial period would in principle translate well to
a coupled system close to energy balance, i.e., with no net
increase or decrease in energy into the whole coupled sys-
tem. However, coupled-system biases in the surface distribu-
tion of SSTs and sea ice mean that tuning also needs to be
performed in the fully coupled system.

Coupled model tuning brings together the individual fully
active “tuned” components and their associated working
groups to perform a series of preindustrial climate experi-
ments. The same performance metrics that are applied in at-
mosphere AMIP simulations apply to the coupled simula-
tion, namely top-of-atmosphere zero-energy imbalance. An
equilibrium energy imbalance is the most challenging task
in coupled CESM tuning. The difficulty lies in spin-up and
drift of the system. Two ocean initialization approaches are
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used. The first is to use an observed Levitus temperature and
salinity state with the ocean at rest. The second approach is
to initialize from an ocean state of a previously run simula-
tion. This has the advantages of a spun-up ocean state, and
in particular the deep ocean, that is more “familiar” with the
overlying atmosphere component. However, it is undesirable
from the perspective of simulation provenance. A combina-
tion of the two are used. If the equilibrium energy imbalance
is greater than 0.1-0.2 W m ™~ then the system will need to be
retuned, again most commonly through minor adjustments
of cloud radiative impact parameters. If the energy imbal-
ance and surface temperature drifts are observed to be small
in short decadal runs, then longer 50—100-year simulations
are performed to determine whether the performance of the
ocean-ice-only simulations translate to the fully coupled sys-
tem.

For the coupled simulations to be considered successful,
they have to satisfy many of the requirements outlined above
in addition to the dominant ENSO mode of variability —
also a very challenging task. For instance, the initial imple-
mentation of more advanced convection parameterizations in
CAMG6 gave rise to a degradation in ENSO performance, but
with some tuning to those schemes, ENSO performance skill
was enhanced. Another example of coupled issues that arose
in constructing the CMIP6 version of the code were a per-
sistent cold bias and excessive sea ice in the Labrador Sea,
which was mitigated by more accurate routing of local river
runoff. In previous versions (such as CCSM4), there were
evaluations of the coupled model in historical transient mode,
specifically of the September Arctic sea-ice trend from 1979,
which was improved after adjustments to the sea-ice albedo
formulation to affect the PI ice thickness (Gent et al., 2011).
A “reasonable” historical temperature trend remains the pri-
mary metric of success, but no attempts are made to tune for
it explicitly.

3.6 NCEP

In recent history two fully coupled climate models have be-
come operational at NCEP, the CFS version 1 (Saha et al.,
2006) and CFS version 2 (Saha et al., 2010, 2014). For the
most part, the CFS and its predecessors (since there have
been global climate models at NCEP since 1995) have been
developed in the same way as weather prediction models. In-
deed, the atmospheric component of the CFS is taken from
the Global Forecast System (GFS), which is the NCEP flag-
ship that makes weather forecasts from day 1 to 15. Verifica-
tion against independent future reality (the weather happen-
ing worldwide every day) shows the GFS and similar opera-
tional models elsewhere steadily improving their skill scores
on independent data over the last 50 years.

The daily verification skill scores are the dominant source
for tracking model improvement. This is a powerful target
for tuning which confronts the model with real-time obser-
vations in evolving data assimilation systems and then ver-

Geosci. Model Dev., 10, 3207-3223, 2017

G. A. Schmidt et al.: US climate model tuning

ifying the forecasts, from the initial conditions provided by
these data assimilation systems, with independent observa-
tions.

A new CFS is built by taking a snapshot of the latest state-
of-the-art GFS as its atmospheric component, along with
state-of-the-art ocean, sea-ice, and land models which are
available at that time. In developing CFSv1 in 2002, a “large”
(= 10) number of candidate coupled ocean—atmosphere
models were constructed, which were then run on a limited
number of test cases, with differing vertical and horizontal
resolutions, as well as with different physics parameteriza-
tions, such as convection and radiation schemes. The results
were then judged, along with the normal verification metrics,
on whether the 9-month predictions produced skillful ENSO
predictions. Our goal at that time was to be competitive with
the statistical models that were predominantly being used for
ENSO predictions. After initial testing, the model version
that gave the best ENSO predictions was used to make retro-
spective forecasts over a period of 20+ years (going back to
1982) in order to calibrate (remove the systematic bias in) the
model forecasts and to make a priori skill assessments. These
were then used in subsequent real-time operational forecasts
made by the CFS. Since it is very expensive to make retro-
spective forecasts over long periods (20-30 years) for every
imaginable model configuration, the preliminary test over a
set of limited cases was extremely important. The dominant
changes that improved skill were associated with tunings in
the convection as model vertical layers were increased from
28 to 64 levels.

Having achieved some success in the prediction of ENSO
in seasonal forecasts up to 9 months ahead in CFSv1, the goal
for CFSv2 was to tackle subseasonal predictions, mainly of
the MJO in the tropics. Prediction of the MJO from 5 days
was successfully extended to nearly 21 days by improving
model physics and having a high-resolution state-of-the-art
data assimilation system to assimilate direct satellite radiance
data. Also, greenhouse gas concentration changes were im-
plemented in the NCEP forecast system. While the NCEP
focus is short-term (seasonal) climate prediction, it has been
recognized that even for these predictions, the forecast needs
to be warmer than a “normal” that, by necessity, is based on
past data. The increase in GHGs also played an important
role in improving the data assimilation of satellite radiance
data. Each satellite over the 1979—present history was cali-
brated using GHG concentrations observed at the time these
satellites were operational. The result was a reasonable up-
ward temperature trend over the 1979—present period, much
better than at the time of CFSv1, when the upward trend over
land was brought about only by the warming in initial global
ocean conditions. As described in Saha et al. (2014), the sea-
sonal prediction model may not be exactly the same as the
model used for weather forecasts. In the absence of data as-
similation, coupled ocean—atmosphere models can drift and
produce, for instance, a very cold Pacific Ocean due to a
boundary layer parameterization change in a weather model
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that produced more marine stratus clouds, but which became
excessive in the fully coupled runs. This change was thus re-
versed in the seasonal simulations.

Development is now underway for the next model, CFSv3.
NCEP/EMC has a strategic plan to unify the global fore-
cast systems and develop a Unified Global Coupled Sys-
tem (UGCS) for both weather and seasonal climate predic-
tion. This system will have six fully coupled model compo-
nents, namely the atmosphere, ocean, sea ice, land, waves
and aerosols. It will also have a strongly coupled data assim-
ilation system in each of these six components.

4 Commonalities and differences

As might be expected, the broad picture of tuning across
the climate model groups is consistent. The key adjustable
parameters are those associated with uncertain and poorly
constrained processes such as clouds, convection, gravity
wave drag, and ocean-mixing parameters. Common too are
the broad array of targets against which skill of the mod-
els are judged, e.g., the TOA shortwave and longwave radi-
ation, 500 hPa geopotential height, surface temperatures, sea
level pressure, and precipitation. However, it is also abun-
dantly clear that the procedures at each group are quite dis-
tinct and can reasonably be surmised to reflect different sci-
entific priorities and missions and thus will produce different
outcomes.

The model groups also differ in whether they focus on
preindustrial conditions or present-day simulations. The for-
mer has the benefit of being closer to climate stability, while
the latter has substantially more observational data. The
groups focusing on the preindustrial are judging (mostly cor-
rectly) that the errors in the control simulation (whether run
for preindustrial or present-day periods) are larger than the
trends between those periods. A stark difference does exist
between the models that have operational data assimilation
products (NCEP and GMAO) and those that do not. The abil-
ity to assess improvements in fast physics based on short
forecasts is an excellent resource that, even if the climate
models were not run operationally in this way, should be-
come a more widely used methodology (e.g., Hurrell et al.,
2006). Recent experience with this mode of testing in the
GISS model has shown very positive results for representa-
tion of the MJO and tropical convection (Del Genio et al.,
2015). Groups also differ on which metrics they monitor for
whether they are within an acceptable range, or if a specific
value is tuned for directly (for instance, as for the present-day
energy balance for some groups in Table 2).

There are also some clear commonalities in approaches.
All groups focus on atmospheric models at first either in
an AMIP-style mode (annually varying modern SST and
sea ice), using a climatological approach (decadal mean ob-
served ocean conditions and forcings), or in weather fore-
cast mode. Tunings for atmospheric composition and key at-
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mospheric diagnostics use these experiments which have the
advantage of fast equilibration times and reduced computa-
tional load. Tunings for ocean components can be done in
stand-alone experiments, but often are done within the full
coupled framework, with at least some model groups tuning
sea-ice and ocean-mixing parameterizations to produce ac-
ceptable sea-ice cover and ocean circulation metrics.

4.1 Use of recent trends and present-day radiative
imbalance

Because of the high importance and visibility of climate
models’ simulation of the historical period (PI to PD), model
groups have to be particularly clear in how information that
reflects the ongoing trends in temperature and ocean heat
content have been used in the tuning process.

The descriptions above suggest that increasing knowledge
over time about the current radiative imbalance has clearly
influenced model development. Developers prior to CMIP3
(circa 2004) had a general expectation that net radiative forc-
ing over the 20th century was positive, but they were not able
to use a specific value for the present-day energy imbalance
because oceanic analyses were not accurate enough: compare
Levitus et al. (2000) to Allan et al. (2014) for instance. Thus
a posterior quantitative test of the model imbalance in cou-
pled runs compared to (improving) observations was a valid
test of skill (Hansen et al., 2005). This may not be true for a
large fraction of simulations in CMIP6.

We summarize the results in Table 2. None of the models
described here use the temperature trend over the historical
period directly as a tuning target, nor are any of the mod-
els tuned to set climate sensitivity to some preexisting as-
sumption. However, NCAR, GFDL, and DOE do tune for
a global radiative imbalance at near-present-day conditions.
For instance, GFDL AM3 with observed SSTs was tuned to
have a positive imbalance, with a magnitude less than about
1 Wm~2 for 1981-2000.

As discussed above, the radiative imbalance can be af-
fected in two ways: by adjusting internal parameters (mostly
associated with clouds) and/or by using a different historical
forcing. Four models adjust their historical aerosol forcing:
GISS, though only in its noninteractive runs, aims for an in-
direct aerosol forcing of —1 W m—2 (Schmidt et al., 2014);
NCAR CESM and DOE ACME tune for a substantive posi-
tive effective radiative forcing at near-present conditions (im-
plying a limit of —1.5 W m~? for aerosols); GFDL AM3 con-
strained its ratio of Cess sensitivity to RFP to be close to its
value in its prior-generation coupled model, which implied
an aerosol forcing around —1.6 W m~2 in AM3.

At least three of the model groups discussed here find a
difference between the energy imbalance using year 2000
forcings together with observed SST and sea ice, and the
transient coupled simulations for the same time period and
forcings. However, the differences in how this calculation is
done can be important, and the implications for the coupled
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Table 2. Use of historical period trends and imbalances during the tuning process.

Modeling  Historical Radiative Radiative Aerosol forcing Aerosol

group temp. trend  balance (PI) imbalance (PD) (as tunable parameter) indirect effect (AIE)
DOE Yes! Yes? 0.5-1.0Wm~22 <15Wm2 Yes

GFDL No No Yes, <1.0Wm™22  No? Yes

GISS No Yes? No Yes/No> Yes

GMAO No n/a No No No (pending)
NCAR Yes/No* Yes® 0.5-1.0 Wm—22 <15Wm2 Yes

NCEP No n/a No No No

@ Using atmosphere-only or AMIP simulations. © Using coupled ocean—atmosphere simulations. 1 PD has to be warmer than PI. 2 However,
sensitivity and forcing were jointly constrained with respect to the previous model. 3 Set in simulations with noninteractive composition only. 4t
was a necessary criteria for CCSM4, but not specifically tuned for. n/a = not applicable

model simulations are unclear. For example in the GISS-E2
model, the decadal mean imbalance (1996-2005) in AMIP
simulations, including all forcings and annually varying ob-
served SST and sea ice, is 1.25 W m™2 (for 1981-2000 it
is O.6Wm’2). However, using the decadal mean SST and
sea ice for the same period and constant year-2000 forc-
ings, the imbalance is much larger, at 1.74 W m~2. Further-
more, the decadal mean imbalance in coupled simulations
with the same forcings is ~ 1.0+ 0.1 W m™2 (Miller et al.,
2014). Similarly, for the GFDL AM3 AMIP runs from 1981
to 2000, the radiative imbalance is 0.8 W m~2, while the im-
balance for the same period in the coupled historical runs
has an ensemble mean of 0.4 W m~2. The differences de-
pend critically on the patterns of SST and sea ice, related to
both the rectification of interannual variability and the offsets
in the coupled model climatology compared to observations.
The question that is raised by this is whether, given the in-
crease in forcings over the historical period and the sensitiv-
ity each model has, tuning the present-day imbalance (how-
ever defined) determines (even to zeroth order) the coupled
imbalance, the “committed warming” (at constant concen-
trations) for the model, or the historical trend. With a perfect
coupled model, and perfect knowledge of the forcings, this
might be the case, but the imperfections in both imply that
tuning to the PD imbalance is less of a constraint than might
be assumed.

5 Discussion and future approaches

As models are continually evaluated at the process-level
against an increasing number of observations, analyses often
show that existing parameterizations lack enough flexibility
to represent the coupling between the subgrid scale and the
environment in all relevant climate regimes. The response is
often to increase the complexity of a parameterization, which
comes at the cost of an increased number of tunable param-
eters. With that increase, the challenges faced by the devel-
opers also rise, as does the potential for “local minima” to
occur, i.e., different parameter combinations have similarly
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good agreement according to standard GCM validation met-
rics (e.g., Taylor diagrams, climate state mean biases, spatial
correlations).

If these distinct and separate volumes of tuning parameter
space lead to simulations that exhibit similarly good agree-
ment with observations, there is no clear scientific reason to
prefer one over another. But will our decisions on parameter
combinations today have a noticeable impact on the simu-
lated climate several centuries from now or to climate sen-
sitivity more broadly? Specifically, does choosing different
local minima in parameter phase space “matter”?

With more combinations, is there room for improving re-
gional biases in simulations while simultaneously making the
tuning process more automated? These questions have mo-
tivated an effort, using the GISS model as a test bed, for
developing a more robust framework for assessing the true
existence of local minima in a multidimensional space (see
also Hourdin et al., 2017). This is being explored by incorpo-
rating situational or regime-dependent errors in observations
or regional biases in GCM fields in weighted cost functions
that define model “goodness”. We hope that this endeavor
will increase the objectivity for deciding on the most appro-
priate tuning parameters and either lead to improved met-
rics for diagnosing the fidelity of a particular model or reveal
the spread in simulated climate sensitivity arising from set-
tling on very different, but seemingly optimal, combinations
of tuning parameters.

More generally, the large variety of approaches demon-
strated among just these six models indicates that the doc-
umentation of tuning procedures across a multimodel en-
semble like CMIP6 will be quite challenging. What role
should the degree of tuning matter when assessing the cou-
pled model skill? Should simulations be up-weighted in the
ensemble because of a closer climatology to observations,
or down-weighted because this is partly due to accommoda-
tion? Should models that are tuned differently but have sim-
ilar physics be treated as independent or not? (Annan and
Hargreaves, 2017; Knutti et al., 2017). These questions play
into more fundamental issues related to how one should think
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Model Code URL and collaboration policies (if relevant)

DOE ACME https://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy
https://climatemodeling.science.energy.gov/sites/default/files/publications/ ACME_ collaboration_30Jun15.pdf

GFDL CM3 https://www.gfdl.noaa.gov/modeling-systems- group-public-releases/

GISS ModelE2 https://www.giss.nasa.gov/tools/modelE/

GMAO GEOS-5  http://geos5.org/wiki/index.php?title=GEOS-5_public_AGCM_Documentation_and_Access

NCAR CESM1 http://www.cesm.ucar.edu/models/cesm1.2
http://www.cesm.ucar.edu/models/cesm1.2/copyright.html

NCEP CFSv2 http://cfs.ncep.noaa.gov/cfsv2/downloads.html

about an unstructured multimodel ensemble (see, e.g., Knutti
et al., 2010, 2013).

At the minimum, we recommend that all future model de-
scription papers (or systematic documentation projects such
as ES-DOC http://es-doc.org) include a list of tuned-for tar-
gets and monitored diagnostics and describe clearly (as in
Table 2) their use of historical trends and imbalances in the
development process.

While we have only discussed tuning in the context of his-
torical and modern simulations, it is vital to assess the cred-
ibility of models by examining their performance in out-of-
sample situations. This is easy for the models with an oper-
ational weather forecast mode (at least for some aspects of
the climate system), and participation in paleoclimate model
tests by NCAR and GISS are also invaluable. Medium-term
climate forecasts based on anticipated changes in forcings
(such as the eruption of Mount Pinatubo (1991) or the rise
in greenhouse gases) have been shown to have skill (Hansen
et al., 1988, 1992; Hargreaves, 2010). The importance (or
lack thereof) of tuning always needs to be seen within that
context. This paper alone cannot hope to answer all of the
above questions, but we hope that it can contribute to a more
transparent and more widely usable discussion.

Code and data availability. The availability of code for the models
discussed in this paper is laid out in Table 3, though note that some
decisions and/or tunings mentioned above are associated with cur-
rent development which may only be accessible with a collaborative
agreement in place.
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